V2EX matrix product state

Matrix Product State

释义 Definition

Matrix product state(矩阵乘积态,常缩写为 MPS):一种用一串低阶张量(或矩阵)相乘/收缩来表示量子多体(尤其是一维)波函数的表示形式;能以较少参数高效刻画许多具有有限纠缠的量子态,是张量网络与 DMRG(密度矩阵重整化群)中的核心工具。(在某些语境下也泛指“用矩阵乘积结构表示的状态”。)

发音 Pronunciation (IPA)

/metrks prdkt stet/

例句 Examples

I used a matrix product state to approximate the ground state of a 1D spin chain.
我用矩阵乘积态来近似一维自旋链的基态。

Because the entanglement is limited, a matrix product state can represent the system accurately with a small bond dimension.
由于纠缠受限,矩阵乘积态可以用较小的键维度就把系统表示得很准确。

词源 Etymology

该短语由 matrix(矩阵)+ product(乘积)+ state(状态) 直译组合而成,强调“量子态的系数可写成一串矩阵(更一般为张量)的乘积/收缩”。作为术语,它在量子多体与量子信息领域随 DMRG 与张量网络方法的发展而普及,尤其与 1990 年代对一维系统高效表示的研究密切相关。

相关词 Related Words

文学与著名作品 Literary / Notable Works

  • Ulrich Schollwck, “The density-matrix renormalization group in the age of matrix product states” (Annals of Physics, 2011)
  • Román Orús, “A practical introduction to tensor networks: Matrix product states and projected entangled pair states” (Annals of Physics, 2014)
  • F. Verstraete, J. I. Cirac, “Matrix product states represent ground states faithfully” (Physical Review B, 2006)
关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1831 人在线   最高记录 6679       Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 8ms UTC 01:08 PVG 09:08 LAX 17:08 JFK 20:08
Do have faith in what you're doing.
ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86